Sustainable Groundwater Development through Integrated Watershed Management for Food Security
Abstract
Integrated watershed development is the strategy adopted in the country for sustainabledevelopment of dry land areas and a recent comprehensive assessment of watershed programs in India undertaken by ICRISAT-led consortium revealed that integrated watershed can become the growth engine for sustainable development of dry land areas by improving the performance of 2/3rd watersheds in the country (Wani et al. 2008). In most of the developed watersheds with concerted efforts to manage rainwater, the groundwater availability is improved not only in the watershed, but the downstream areas also benefited with increased groundwater recharge (Wani et al. 2003, Sreedevi et al. 2006, Pathak et al. 2007). Along with the increased surface and groundwater availability and concomitant private investments also substantially increased in the developed watersheds, resulting in the increased incomes as well as improved livelihoods (Sreedevi et al. 2006, 2008 and Pathak et al. 2007). Increased water availability also had a positive impact in improving welfare for the women, reduced drudgery, and protected the environment. In few well-managed watersheds, the productivity per unit of land and water increased substantially (Wani et al. 2003).
However, agricultural production increased in many watersheds, the productivity per unit of land and water was not increased (Sreedevi et al. 2006). There is a need to adopt more water use efficiency measures along with integrated management of water resources in watersheds for sustaining the development measures. There are a number of examples where with the watershed development based on the over-exploitation of groundwater by the community, depleted groundwater to levels lower than those before the watershed development. Increased numbers of wells (open and bore wells) along with the increased number of pumping hours pose a serious threat for sustaining the development in the watersheds. The results from the watershed case studies from Andhra Pradesh, Madhya Pradesh, Rajasthan, Maharashtra and Gujarat are used to derive the conclusions (Batchelor C et al. 2000).
In the various watersheds of India like Lalatora in Madhya Pradesh, the treated arearegistered a groundwater level rise by 7.3 m. At Bundi in Rajasthan, the average rise was 5.7 m, and the irrigated area increased from 207 ha to 343 ha. In the Kothapally watershed, the groundwater level in open wells rose by 4.2 m. In the Rajasamadhiyala watershed, thenumber of open wells increased from 255 in 1995, with very poor yield with an average water column of 5.9 m to 308 wells with mean water column of 10.4 m. Overall, there has been an increase of 4.4 m of water column in 2004, as compared to that of 1995. The average pumping duration of 5.25 hrs per day in 1995 increased to 10.4 hrs per day in 2004, resulting in increased irrigated area by 58 per cent. Similarly, the number of bore wells also increased from 102 to 200 during the period. Doubling of the number of the bore wells in the watershed is a cause of concern as in spite of farmers’ experience of defunct bore wells in 1995 and earlier they have again drilled more bore wells than open wells.
The marginal positive groundwater balance in lean and average rainfall years could tilt to negative side very soon if the farmers continued drilling bore wells and pumping at the rate they have done from 1995 to 1999. Although the villagers acted collectively for water harvesting, there is no concern or awareness amongst the villagers for a sustainable use of groundwater. There is a need for community monitoring of groundwater and its allocation to individuals. There is an urgent need to bring in the change in the attitude of all the stakeholders where most solutions for water management are thought from increasing water availability and not from demand management. Increased rainwater and groundwater use efficiency could maintain the incomes as well as sustain development; however, the groundwater management will need community participation, social and institutional mechanisms along with the enabling policy mechanisms through suitable incentive as well as punitive measures with legal support and execution. This paper discusses the results from on-farm community watersheds through groundwater management as the drivers for sustainable management of watersheds dry land areas. The issues of sustainable development and management of the groundwater resource through integrated watershed management (IWM) approach are also dealt relative to food production and security.
Introduction
Sustainable Groundwater Development and Management through IWM Approach
Impact of Groundwater Management on Crop Production and Food Security
Increased Farmers’ Investment with Water Availability
Increased Crop Productivity and Food Security
Conclusions
Acknowledgement
References
• Aithal KR. 2007. Legal framework of groundwater management. Paper presented at the workshop on “Water quality management and conservation role of legal system”, Organized by CEERA, National Law School of India, Bangalore University and University of Mysore at Univ. of Mysore during 16-17 August 2002. http://www.nlsenlaw.org/water/articles/copyright
• Batchelor C, Ram Mohan Rao MS and James AJ. 2000. Karnataka watershed development project: Water resources audit. KAWAD Report. 17. Bangalore, India.
• Brown, L. 1999. Feeding nine billion. In L. Starke, ed. State of the world 1999, pp. 116-132. New York, USA, W.W. Norton & Company
• Chambers, R., Saxena, N.C. & Shah, T., eds. 1989. To the hands of the poor, water and trees. New Delhi, Oxford and IBH Publishing Co.
• CGWB. 2006. Dynamic ground water resources of India, Central Ground Water Board (CGWB), New Delhi.
• Dains, S.R. & Pawar, J.R. 1987. Economic returns to irrigation in India. New Delhi, Report prepared by SDR Research Groups Inc. for the US Agency for International Development.
• FAO, 2002. Rethinking the approach to groundwater and food security. Water Reports: 24
• Government of India, 2007. Report of the expert group on “Groundwater management and ownership” submitted to Planning Commission, September 2007. Government of India, Planning Commission, Yojana Bhavan, Parliamentary Street, New Delhi. 61 pages.
• Ministry of Water Resources, 2005. Report on 3rd Census of Minor Irrigation Schemes, Government of India, New Delhi.
• Meinzen-Dick, R. 1996. Groundwater markets in Pakistan: participation and productivity. Washington, DC, International Food Policy Research Institute
• Molden David, Karen Frenken, Randolph Barker, Charlotte de Fraiture, Bancy Mati, Mark Svendsen, Claudia Sadoff, and C.Max Finlayson. 2007. Trends in water and agricultural development Pages 57– 89 in Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture (ed. David Molden). London, UK: Earthscan and Colombo, Srilanka: International Water Management nstitute
• MOWR. 2005. 13th National Conference of Water Resources and Irrigation Ministers of State Governments and Union Territories, Ministry of Water Resources (MOWR), New Delhi.
• Pathak P, Wani SP, Singh Piara, Sudi R and Srinivasa Rao Ch. 2002. Hydrological characterization of benchmark agricultural watersheds in India, Thailand and Vietnam. Global Theme 3 Report no. 2, Patancheru 502324, Andhra Pradesh, India: International Crops Research Institute for the Semi Arid Tropics. 52 pp.
• Pathak P, Wani SP, Sudi R, Chourasia AK, Singh SN and Kesava Rao AVR. 2007. Rural prosperity through integrated watershed management: A case study of Gokulpura-Goverdhanapura in eastern Rajasthan. Global Theme on Agroecosystems Report no. 36, Patancheru 502324, Andhra Pradesh, India: International Crops Research Institute for the Semi Arid Tropics. 52 pp.
• Rockström J, Nuhu Hatibu, Theib Oweis, and Suhas P Wani 2007. Managing Water in Rainfed Agriculture. Pages 315-348 in Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture (ed. David Molden). London, UK: Earthscan and Colombo, Srilanka: International Water Management Institute.
• Rosegrant, M.W. & Ringler, C. 1999. Impact of food security and rural development of reallocating water from agriculture. Washington, DC, International Food Policy Research Institute.
• Seckler, D., Barker, R. & Amarasinghe, U.A. 1999. Water scarcity in the twenty-first century. Int. J. Wat. Res. Dev., 15(1/2): 29-42.
• Sen, A. 1999. Poverty and famines. Delhi, India, Oxford University Press.
• Shah, T. 1993. Groundwater markets and irrigation development: political economy and practical policy. Mumbai, India, Oxford University Press.
• Sharma K D 2009. Groundwater management for food security. Current Science, Vol. 96 No. 11, 1444-1447.
• Singh, D. K. and Singh, A. K., 2002. International. Journal. Water Resource. Development, 18, 563–580.
• Sreedevi TK, Wani SP, Sudi R, Patel MS, Jayesh T, Singh SN and Tushaar Shah. 2006. On-site and off-site impact of watershed development: A case study of Rajsamadhiyala, Gujarat, India. Global Theme on Agroecosystems Report no. 20, Patancheru 502324, Andhra Pradesh, India: International Crops Research Institute for the Semi Arid Tropics. 48 pp.
• Sreedevi TK, Wani SP, Sudi Raghavendra Rao, Harsha Vardhan Deshmukhi, Singh SN and Marcella D’souza. 2008. Impact of Watershed Development in Low Rainfall Region of Maharashtra: A Case Study of Shekta Watershed. Global Theme on Agroecosystems Report no. xx Patancheru 502 324, Andhra Pradesh, India; International Crops Research Institute for Semi-Arid Tropics. In print.
• Wani SP, Pathak P, Sreedevi TK, Singh, HP and Singh P. 2003. Efficient Management of Rainwater for Increased Crop Productivity and Groundwater Recharge in Asia. CAB International 2003. Water
• Productivity in Agriculture: Limits and Opportunities for Improvement. (eds. W. Kijne, R. Barker and D. Molden) pp. 199-215.
• Wani SP, Ramakrishna YS. 2005. Sustainable Management of Rainwater through Integrated Watershed Approach for Improved livelihoods. In: “Watershed Management Challenges: Improved Productivity, Resources and Livelihoods”, (eds. Bharat R Sharma, J S Samra, CA Scot and Suhas P Wani), IMMI Sri Lanka. Pp39-60.
• Wani SP, Ramakrishna YS, Sreedevi TK, Long TD, Thawilkal Wangkahart, Shiferaw B, Pathak P and Keshava Rao AVR. 2006. Issues, Concept, Approaches Practices in the Integrated Watershed Management: Experience and lessons from Asia. In: Integrated Management of Watershed for Agricultural Diversification and Sustainable Livelihoods in Eastern and Central Africa: Lessons and Experiences from Semi-Arid South Asia. Proceedings of the International Workshop held during 6-7 December 2004 at Nairobi, Kenya, pp17-36.
• Wani SP, Joshi PK, Raju KV, Sreedevi TK, Mike Wilson, Amita Shah, Diwakar PG, Palanisami K, Marimuthu S, Ramakrishna YS, Meenakshi Sundaram SS and Marcella D’Souza. 2008. Community Watershed as Growth Engine for Development of Dry land Areas – Executive Summary. A Comprehensive Assessment of Watershed Programs in India. Patancheru 502 324, Andhra Pradesh, India, International Crops Research Institute for the Semi-Arid Tropics. 36 pp.
• Wani SP. 2008a. A New Paradigm for Rainfed Agriculture for Improving Livelihoods and Sustainable Development in India. 2008. Proceedings of the National Workshop on New Paradigm for Rainfed Farming held at New Delhi during 27-29 Sept 2007. pp 30-31.
• Wani SP, Sreedevi TK, Rockström J and Ramakrishna YS. 2009. Rain-fed agriculture - Past trend and future prospects. In: Wani SP, Rockström J and Oweis T (eds) Rain-fed agriculture: Unlocking the Potential. Comprehensive Assessment of Water Management in Agriculture Series. CAB International, Wallingford, UK, pp. 1-35.
Suhas P. Wani, Raghavendra Sudi, P. Pathak
International Crops Research institute for the Semi Arid Tropics (ICRISAT), Andhra Pradesh